dc.contributor.author | Ozkan, Haydar | |
dc.contributor.author | Tulum, Gokalp | |
dc.contributor.author | Osman, Onur | |
dc.contributor.author | Sahin, Sinan | |
dc.date.accessioned | 2021-12-21T08:47:42Z | |
dc.date.available | 2021-12-21T08:47:42Z | |
dc.date.issued | 2017 | |
dc.identifier.issn | 1392-1215 | |
dc.identifier.uri | https://doi.org/10.5755/j01.eie.23.1.17585 | |
dc.identifier.uri | http://dspace.yeniyuzyil.edu.tr:8080/xmlui/handle/20.500.12629/2289 | |
dc.description.abstract | In this study, a novel computer-aided detection (CAD) method is introduced to detect pulmonary embolism (PE) in computed tomography angiography (CTA) images. This method consists of lung vessel segmentation, PE candidate detection, feature extraction, fea | |
dc.description.sponsorship | Dr. Siyami Ersek Thoracic; Cardiovascular Surgery Training and Research Hospital, Istanbul, Turkey | |
dc.language.iso | English | |
dc.publisher | Kaunas Unıv Technology | |
dc.rights | Green Submitted, gold | |
dc.title | Automatic Detection of Pulmonary Embolism in CTA Images Using Machine Learning | |
dc.type | Article | |
dc.relation.journal | Elektronıka Ir Elektrotechnıka | |
dc.identifier.issue | 1 | |
dc.identifier.startpage | 63 | |
dc.identifier.endpage | 67 | |
dc.identifier.volume | 23 | |
dc.identifier.doi | 10.5755/j01.eie.23.1.17585 | |
dc.relation.issue | 1 | |
dc.relation.volume | 23 | |