dc.contributor.author | Eksi, Ziya | |
dc.contributor.author | Ozcan, Muhammed Emin | |
dc.contributor.author | cakiroglu, Murat | |
dc.contributor.author | Oz, Cemil | |
dc.contributor.author | Aralasmak, Ayse | |
dc.date.accessioned | 2021-12-21T08:46:38Z | |
dc.date.available | 2021-12-21T08:46:38Z | |
dc.date.issued | 2021 | |
dc.identifier.issn | 1590-1874 | |
dc.identifier.issn | 1590-3478 | |
dc.identifier.uri | https://doi.org/10.1007/s10072-020-04950-0 | |
dc.identifier.uri | http://dspace.yeniyuzyil.edu.tr:8080/xmlui/handle/20.500.12629/2059 | |
dc.description.abstract | Some multiple sclerosis (MS) lesions may have great similarities with neoplastic brain lesions in magnetic resonance (MR) imaging and thus wrong diagnoses may occur. In this study, differentiation of MS and low-grade brain tumors was performed with comput | |
dc.description.sponsorship | Sakarya University BAPKSakarya University [2015-50-02-012] | |
dc.language.iso | English | |
dc.publisher | Sprınger-Verlag Italıa Srl | |
dc.title | Differentiation of multiple sclerosis lesions and low-grade brain tumors on MRS data: machine learning approaches | |
dc.type | Article | |
dc.relation.journal | Neurologıcal Scıences | |
dc.identifier.issue | 8 | |
dc.identifier.startpage | 3389 | |
dc.identifier.endpage | 3395 | |
dc.identifier.volume | 42 | |
dc.identifier.doi | 10.1007/s10072-020-04950-0 | |
dc.relation.issue | 8 | |
dc.relation.volume | 42 | |