Show simple item record

dc.contributor.authorEksi, Ziya
dc.contributor.authorOzcan, Muhammed Emin
dc.contributor.authorcakiroglu, Murat
dc.contributor.authorOz, Cemil
dc.contributor.authorAralasmak, Ayse
dc.date.accessioned2021-12-21T08:46:38Z
dc.date.available2021-12-21T08:46:38Z
dc.date.issued2021
dc.identifier.issn1590-1874
dc.identifier.issn1590-3478
dc.identifier.urihttps://doi.org/10.1007/s10072-020-04950-0
dc.identifier.urihttp://dspace.yeniyuzyil.edu.tr:8080/xmlui/handle/20.500.12629/2059
dc.description.abstractSome multiple sclerosis (MS) lesions may have great similarities with neoplastic brain lesions in magnetic resonance (MR) imaging and thus wrong diagnoses may occur. In this study, differentiation of MS and low-grade brain tumors was performed with comput
dc.description.sponsorshipSakarya University BAPKSakarya University [2015-50-02-012]
dc.language.isoEnglish
dc.publisherSprınger-Verlag Italıa Srl
dc.titleDifferentiation of multiple sclerosis lesions and low-grade brain tumors on MRS data: machine learning approaches
dc.typeArticle
dc.relation.journalNeurologıcal Scıences
dc.identifier.issue8
dc.identifier.startpage3389
dc.identifier.endpage3395
dc.identifier.volume42
dc.identifier.doi10.1007/s10072-020-04950-0
dc.relation.issue8
dc.relation.volume42


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record