dc.contributor.author | Dağıstanlı, S. | |
dc.contributor.author | Sönmez, S. | |
dc.contributor.author | Ünsel, M. | |
dc.contributor.author | Bozdağ, E. | |
dc.contributor.author | Kocataş, A. | |
dc.contributor.author | Boşat, M. | |
dc.contributor.author | Yurtseven, E. | |
dc.contributor.author | Çalışkan, Z. | |
dc.contributor.author | Günver, M.G. | |
dc.date.accessioned | 2021-12-21T08:40:34Z | |
dc.date.available | 2021-12-21T08:40:34Z | |
dc.date.issued | 2021 | |
dc.identifier.issn | 16806905 | |
dc.identifier.uri | https://doi.org/10.4314/ahs.v21i3.16 | |
dc.identifier.uri | http://dspace.yeniyuzyil.edu.tr:8080/xmlui/handle/20.500.12629/1079 | |
dc.description.abstract | Background/aim: The present study aimed to create a decision tree for the identification of clinical, laboratory and radiological data of individuals with COVID-19 diagnosis or suspicion of Covid-19 in the Intensive Care Units of a Training and Research H | |
dc.language.iso | English | |
dc.publisher | Makerere University, Medical School | |
dc.rights | All Open Access, Gold | |
dc.title | A novel survival algorithm in covid-19 intensive care patients: The classification and regression tree (crt) method | |
dc.type | Article | |
dc.relation.journal | African Health Sciences | |
dc.identifier.issue | 3 | |
dc.identifier.startpage | 1083 | |
dc.identifier.endpage | 1092 | |
dc.identifier.volume | 21 | |
dc.identifier.doi | 10.4314/ahs.v21i3.16 | |
dc.relation.issue | 3 | |
dc.relation.volume | 21 | |